Connected Hopf corings and their Dieudonné counterparts
نویسندگان
چکیده
منابع مشابه
Duality for Finite Hopf Algebras Explained by Corings
We give a coring version for the duality theorem for actions and coactions of a finitely generated projective Hopf algebra. We also provide a coring analogue for a theorem of H.-J. Schneider, which generalizes and unifies the duality theorem for finite Hopf algebras and its refinements.
متن کاملLow Dimensional Cocommutative Connected Hopf Algebras
William M. Singer’s theory of extensions of connected Hopf algebras is used to give a complete list of the cocommutative connected Hopf algebras over a field of positive characteristic p which have vector space dimension less than or equal to p3. The theory shows that there are exactly two noncommutative non-primitively generated Hopf algebras on the list, one of which is the Hopf algebra corre...
متن کاملIsoperiodic classical systems and their quantum counterparts
One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel’s characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational pote...
متن کاملDirac-Yang monopoles and their regular counterparts
The Dirac-Yang monopoles are singular Yang–Mills field configurations in all Euclidean dimensions. The regular counterpart of the Dirac monopole in D = 3 is the t Hooft-Polyakov monopole, the former being simply a gauge transform of the asymptotic fields of the latter. Here, regular counterparts of Dirac-Yang monopoles in all dimensions, are described. In the first part of this talk the hierarc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arabian Journal of Mathematics
سال: 2014
ISSN: 2193-5343,2193-5351
DOI: 10.1007/s40065-014-0109-2